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The paper focuses on the development and evaluation of an autonomous payload tracking capability for 
determining time, state and attitude information (TSPI) of all types of airdrop loads. This automated 
capability of accurately acquiring TSPI data, will reduce the labor time and eliminate man-in-the-loop errors. 
The paper analyses the problem and then proceeds with the description of the PerceptiVU Target Tracking 
System (TTS) software adopted for obtaining the TSPI. The key features of this software include a choice of 
three basic tracking algorithms (dynamic centroid, hottest spot thresholding, dynamic correlation), capability 
of capturing from both standard analog video sources (such as NTSC and/or RS170) and digital video 
sources, control of the entire system with an off-the-shelf joystick controller. The paper further describes 
algorithms to be used in conjunction with the data provided by the TTS to determine system’s state variables. 
A position estimation solution is based on tracking a payload’s center (or any other predetermined point) by 
several cameras with known positions. A pose (position and orientation) estimation solution is based on 
tracking of four distinctive non-coplanar points. Pre-selected and artificially marked points on the moving 
target cooperatively serve as beacons, therefore providing precise measurements of the line of sign toward 
these points. This allows unique position and attitude estimation and no need for additional pattern 
recognition. In conclusion, the paper provides examples of video data processing and parameters estimation. 

I.   Introduction 
HIS paper addresses the development of the software capable of determining three-dimensional payload 
position and possibly payload’s attitude based on observations obtained by several fixed cameras on the ground. 

One of the objectives pursued by the authors is to allow for estimation of system’s states needed for the development 
of advanced flight dynamic modeling and simulation of aerodynamic decelerating systems, without having any 
sensors onboard. The current method of measuring position and velocity of air delivery payloads is time consuming. 
After a drop, during which three to four fixed-zoom ground cameras record the flight, each video is manually “read” 
for payload position in the field of view. This is accomplished frame by frame, with the video reader clicking on a 
pixel that represents to them the visual “centroid” of the payload. Each video frame has a bar code with the azimuth, 
elevation and time stamp, so the data for each frame is stored automatically as the pixel is clicked. After the videos 
are read, the data is processed to determine position at each frame during the drop. The payload position is then 
numerically differentiated to calculate velocity. The automated capability of accurately acquiring time, state and 
attitude information (TSPI) will hasten the processing of each video by autonomously tracking the payload once 
initialized. The track will reference a pixel for each frame, and the pixel will be reference to a lookup table for 
azimuth and elevation. Since playback will be at a constant rate, only the first frame time is needed for 
synchronization. 

T 

This development of such autonomous capability (TSPI retrieving system) should address the following three 
independent problems: 
• processing of video data itself with the goal of obtaining the frame coordinates of a certain point of the 

payload, say payload’s geometric center, or even several tracking points, 
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• resolving the position estimation problem assuming that information from two or more cameras is available; 
and 

• resolving position and pose estimation problem assuming that information about at least four noncoplanar 
tracking points is available. 

In what follows Sections 2-4 address each of these problems. Although appropriate software to solve each 
problem was developed and successfully tested in simulations and with the use of real drops data which was 
available, additional efforts and more tests are needed to provide a complete product that could be successfully used 
at the proving ground for autonomous pose estimation. So this paper does not pretend to introduce a complete 
system, rather it presents results of the preliminary analysis of hardware and software capabilities to address the 
problem of autonomous video scoring and dynamic attitude measurement. 

 

II.   Video data processing 
Consider diagram in Fig.1. It shows the task flow of the video data processing system. The key element in this 

system is an offline version of vision-based Target Tracking Software (TTS), which provides tracking of a selected 
object in a local camera coordinate frame based on the analysis of a sequence of video frames. 

Video signal processing consists of the video 
recording, fragmenting, and processing steps. 

Video recording addresses two principal issues. 
The first is the acquiring of live video data, and the 
second is removal of out-of-frame events. This provides 
initial video stabilization required at the fragmentation 
stage. For the stabilization purposes one can utilize two 
different techniques depicted in Fig.2. The key idea 
consists of stabilizing a raw video stream either by its 
recording in the digital format or by using an external 
video stabilizing unit. At the moment, the Pinetron 
PDR-H401 (http://www.pinetron.com) is used to 
stabilize analog video signals. 

Video fragmenting capability is supported by a 
simple “Video Snapper” utility provided by PerceptiVU 
Inc (www.PerceptiVU.com). It takes stabilized video 
and fragments it at the rate of up to 30 frames per 
second. To achieve the highest possible rate it uses low-
level driver support provided by the Matrox card. High 
fragmentation rate allows for easy reconstruction of dynamics of the descending system. Separate frames are saved 
as the gray scaled bitmap files ready for the next, processing step. The files are named in ascending numerical order 
thus providing an additional synchronization capability. 

 
Figure 1. Block diagram of video data processing system. 

Hardware implementation at this step utilizes Matrox Meteor II framegrabber 
(http://www.matrox.com/imaging/products/meteor2/home.cfm) installed in a high performance computer: Pentium 

4/3.2GHz processor with 800MHz front 
side bus and 1Gb RAM, and 
250Gb/7200rpm hard drive. This setup 
together with a framegrabber allows 
stable fragmentation delivering 30 
frames/second of high resolution 
imagery. Video Snapper capability 
allows the following key features: i) 

 

Figure 2. Stabilization of the raw video stream. 
capture from standard analog video 
sources (NTSC, RS170) as well as 1394 digital video sources; ii) capture and digitally save pictures or a movie 
sequence of pictures; iii) control the GUI with a mouse pointer. Figure 3 shows a screenshot of the Snapper GUI. 

Video processing step includes two algorithms. The first one reads bar-coded information (BCI) containing the 
GPS time stamp and azimuth/elevation orientation of the camera’s line-of-sight (LOS) (the barcode is imprinted into 
the bitmap image as seen on the left in Fig.3). This BCI algorithm developed at the YPG by Wade Porter happens to 
be quite sensitive to the contrast and sharpness of the video frames at the location of the bar-code. The algorithm 
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uses thresholding technique to read binary information and therefore, its decoding capability depends on the 
difference between the white and black strips in the bar code. 

The second algorithm uses off-line version of the vision-based TTS developed by the PerceptiVU. Several 
MatLab scripts allow reading the TTS and BCI results, data conditioning and synchronizing. The data obtained by 
these scripts is further passed to the pose estimation algorithm. 

Due to the various polarity and target tracking options provided by the TTS software its performance is less 
sensitive to the quality of the picture. Vision-based TTS software also provides following features: 
• Three tracking algorithms available: 

- Dynamic centroid; 
- Hottest spot thresholding; 
- Dynamic correlation; 

• Three polarity options available: 
- White hot; 
- Black hot; 
- Auto polarity; 

• Five fixed target size and a custom size options are 
available: 
- Custom size; 
- Very small target; 
- Small target; 
- Medium target; 
- Large target; 
- Very large target; 

• Interactive tracking gain; 
• Allows for data logging in ASCII file. 

An example of the TTS GUI is presented on the Fig.4. 
 

Figure 4. PerceptiVU TSS 
 
Several utilities and M-scripts were developed to support c

algorithm. The block diagram in Fig.5 shows how the develope
described above (and shown in Fig.1). 

As discussed earlier, initially the synchronized video stream is f
of grayscale bitmap image files is produced at this step. In order to b
these files should be renamed. Each file name must be of the same le
can be determined by a user and a number in an ascending order. Th
and its result is presented at Fig.4 (see the enumerated set of files in t
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Figure 3. Video Snapper GUI. 
 
GUI. 

ollection of the data for the pose estimation 
d utilities support the video data processing 

ragmented by PerceptiVU video snapper. A set 
e automatically processed by the TTS software 

ngth and should consist of a permanent part that 
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he GUI). 

d Astronautics 



At the next step this renamed set of files is used twice. First 
it is used to read the bar-coded data from each frame and 
secondly to get position of target in a local camera frame. These 
two data sets are synchronized automatically based on the 
number of the file as an index and on the GPS time stamp 
embedded into each frame. 

The barcode reading algorithm (left branch on Fig.5) reads 
a sequence of files, renames them, and then calls the bar-code 
script for each frame. Results of running this code are saved as 
an ASCII Tab-delimited file. 

Vision based TTS software (right branch on Fig.5) 
provided by PerceptiVU performs tracking of the payload. It 
takes enumerated sequence of images as an input. A user can 
select the payload in the first frame of the sequence, determine 
its size, choose suitable polarity, select tracking algorithm and 
tracking gain. Position of the payload in the camera coordinate 
frame (x- and y-offsets) for each frame is saved in an ASCII 
comma-separated file (to do this a user should enable “data 
logging checkbox” in Tools menu, see Fig.4.). Two additional 
parameters are currently also included in this file. First one is 
the Quality of Tracking (QOT). It is an indicator of the level of 
contrast in the tracking gate. Large QOT values indicate good 
contrast; low QOT values indicate little contrast. The second 
one is a Tracking State (TRCK). When TRCK is 1 the tracker is 
engaged and 0 – otherwise. The resulting ASCII file serves as an input to t

Figur .

Video encoding and fragmentation may introduce a distortion of the i
the bar-code reading procedure. This in turn may cause dropouts or 
software may also produce invalid tracking results. In order to correct fo
reading procedures are subject to further processing (conditioning). 

Conditioning of the bar-code data is based on the simple fact that tim
orientation angles are smooth for a descending system (see Fig.6). Thus t
any dropouts or inconsistency and determines the average fragmentat
algorithm restores corrupted time stamp by linearly interpolating the time
last average rate estimated. Though the time stream is corrected, these poi
by introducing an additional Boolean value that takes 1 if the data is valid
reconditioning are presented on Fig.6. 
 

Figure 6. Reconstruction of time stam
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Conditioning of the TTS results is based on the Fast Fourier Transform. It was observed that TTS software 
might lose the target while still producing very stable continuous tracking signals (x- and y- offsets). This can be 
caused by frequent changes of illumination, fast dynamics of the tracking object, poor visibility conditions, and poor 
quality of the video stream. Due to the high rate of fragmented video it is often not possible to visually recognize the 
frames where TTS fails. This is complicated by the fact that TTS might quickly reacquire the target again without 
notifying the user. Therefore additional care should be taken while preparing data for the estimating algorithm. 

The TTS data conditioning consists of analyzing of short moving window of the tracking signal of interest (1-2 
seconds that corresponds to 30-60 points) with small overlap of 10-15%. Tracking failure results in a significant 
falling in the power spectrum as shown in Fig.7. Previous technique of introducing a Boolean indicator on data 
validity is used in this case as well. 

 

 
Figure 7. Validation of tracking results. 

 
Finally, the data from both streams (both branches of Fig.5) are synchronized versus GPS time and passed on to 

the position estimation algorithm discussed next. 
 

III.   Payload position estimation 
This section deals with developing and testing of algorithms that resolve the three-dimensional position of 

payload’s centroid , when its projection { (  onto the image plane of i 

cameras is available. It is assumed that LTP (coordinate frame {u}) positions 
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where . ([1,1,0])R diag=
However, since the measurement errors are always present these two equalities become inequalities and can be 

rewritten as 
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Therefore, each camera contributes two nonlinear equations of the form (2). It follows that to resolve the 
original problem for three components of vector P

r
 we need to have at least two cameras. 
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And the optimization problem for determining components of vector P
r

 maybe now formulated as follows. Having 
full information from N≥2 cameras find vector ( ) ( ), ( ), ( )

T

pl pl plP t x t y t z t⎡ ⎤= ⎣ ⎦
r

 that minimizes the following 
compound functional: 

( 2 2

1

N
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i
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It’s worth noting that in general the original formulas (3) can be written in many ways employing different 
geometric identities. It is quite possible that using alternative formulation may add robustness to the solution. But at 
this point improving algorithm robustness was not an issue since simulations with both emulated and real drop data 
worked fairly well as is shown next. 

These simulations include two basic sets of experiments: 
• Simulation 1.1 when the data from three cameras was emulated (created artificially); and 
• Simulation 1.2 when real data from two cameras was used. 
Figure 8 shows the first of two Simulink models developed to address this problem. This interactive model 

assumes three cameras and allows for varying their positions with respect to payload release point, as well as 
enables selection of one of the two ADS descent trajectories (first – a simple spiral and second one taken from the 
model of Ref.1 incorporating the real YPG wind profile.) Advantage of the Sim.1.1 using emulated cameras data 
(Fig.9) is that the developed perspective position estimation (PPE) algorithm can be thoroughly tested since the 
payload position is known. 

 
Simulation 1.1: Simulation 1.1: SimulinkSimulink ModelModel

Variable parametersVariable parameters:
1. Cameras’ positions;
2. Azimuth/elevation angle measurements accuracy;
3. Tuning parameters in triangulation algorithm.

 

Simulation 1.1 (3DoF/PPE)Simulation 1.1 (3DoF/PPE)

PPE 
Algorithm

Camera 1

Camera 2

Camera 3

Pegasus Model

Comparison

ObjectivesObjectives:
1. Check/tune the 3D perspective pose estimation algorithm;
2. Show the effect of the cameras’ geometry onto the accuracy of the estimate;
3. Show the effect of not having the object centered within the screen;
4. Show the effect of unknown change of zoom.

 
Figure 8. Interactive Simulink model for Simulation 1.1. Figure 9. Essence of Simulation 1.1 for payload position 

estimation. 
 

Figures 10-13 present some results of the first simulation. Fig.10 includes 3D projection of a simple no-wind 
spiral (top left picture), the horizontal projection of simulation setup with positions of three cameras around the 
spiral (top right), azimuth (bottom left) and elevation angles (bottom right) as seen from these three cameras. Based 
on the azimuth-elevation data provided by three cameras with no disturbance present and knowing the precise 
location of these cameras makes it possible to estimate position of the payload very accurately with an estimate error 
on the order of MATLAB rounding error (Fig.11). 

For the sake of sensitivity analysis, Fig.12 shows how inaccuracy in knowing the cameras location maps into 
the payload estimation error. As seen from this figure, for the given geometry, which is fairly close to the right 
pyramid, an estimation error is approximately a half of the camera position error. 

In case of disturbances being present (introduced artificially) the accuracy of PPE algorithm degrades. For 
example, as seen from Fig.13 adding one-degree Gaussian noise (uncertainty) to the azimuth-elevation data causes 
significant errors in estimates of the payload position. For the simple spiral geometry they are as much as around 
±20m (top plot). Having recursive PPE algorithm tuned for higher accuracy (smaller tolerance) brings those errors 
down to ±7m (bottom plot). 

So far it was assumed that the image of payload was always in the center of the frame for all three cameras. 
Another issue that was also addressed during this study is uncertainty in the cameras focus lengths if . In principle 
as was shown above even with two cameras we have one spare degree of freedom so that we could include the focus 
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of one camera into the list of unknown parameters and still solve the problem. With three cameras the focal length of 
all three cameras may be included into the list of variation parameters. 

 
Simulation 1.1: Simple SpiralSimulation 1.1: Simple Spiral

 

Simulation 1.1: PPE w/out Noise and DisturbancesSimulation 1.1: PPE w/out Noise and Disturbances

 
Figure 10. Simple spiral and cameras tracking angles. Figure 11. Accuracy of PPE algorithm with no noises and 

disturbances. 
 

Simulation 1.1: PPE w/ Inaccuracy in Cameras’ Simulation 1.1: PPE w/ Inaccuracy in Cameras’ 
PositionsPositions

Camera 1Camera 1::
∆∆x=x=--5.6m5.6m
∆∆y=y=6.6m6.6m
∆z=7.7m∆z=7.7m

Camera 2Camera 2::
∆∆x=9.1mx=9.1m
∆∆y=3.7y=3.7mm
∆z=∆z=9.9.6m6m

Camera 3Camera 3::
∆∆x=x=--4.9m4.9m
∆∆y=y=5.0m5.0m
∆z=7.3m∆z=7.3m

Cameras’ position errors range: [Cameras’ position errors range: [--10;+10]m (corresponds to half10;+10]m (corresponds to half--aa--degree angular error)degree angular error)

 

Simulation 1.1: PPE w/ 1Simulation 1.1: PPE w/ 1ºº Angular Angular Noise (cont’d)Noise (cont’d)

TolX=10TolX=10--66; TolFun=10; TolFun=10--66

TolX=10TolX=10--88; TolFun=10; TolFun=10--88

ObservationsObservations:
1. Vertical error decreases with time (altitude);
2. Horizontal error stays approximately the same.  

Figure 12. Payload position estimation errors caused by 
inaccuracy in cameras positions. 

Figure 13. Tuning PPE algorithm in presence of one-degree 
noise. 

 
Differentiating obvious equations for actual payload’s azimuth and elevation angles corrected for its non-

centered location within the frame as shown on Fig.14 
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i
pli i
i

u
Az Az

f
∗ −= + , 1tan

i
pli i
i

v
El El

f
∗ −= + ,         (4) 

results in basic relationship between focal length uncertainty ifδ  and actual payload’s azimuth and elevation for 
each camera 
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Therefore having uncertainty focal length translates into uncertainty in angular measurements made by cameras 
and in turn (as seen from Fig.14) into the payload’s position estimate error. This is demonstrated in Fig.15 where 
focal length of one of the cameras was suddenly changed without introducing its new value into the PPE algorithm 
(after 40 sec it was reverted to the original value). Obviously this causes position estimate errors to rise. 

Another set of simulations used real drop data (taken from the previous research on Pegasus) including real 
wind data (Fig.16). Again three cameras were placed around the drop zone and azimuth-elevation data from them 
was emulated. The developed PPE algorithm performed reliably and with the same performance as for the previous 
spiral-type trajectory. 
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Figure 14. Explaining the influence of uncertainty in camera’s focus length. 

 
Obviously algorithm convergence as well as any 

open-end optimization algorithm depends on the 
proximity of the initial guess to the real solution. To 
demonstrate robustness of the developed PPE algorithm 
Fig.17 represents the situation where initial guess was 
miles away from the real payload position. As seen the 
algorithm performed well and converged to the actual 
payload’s position in about 12 sec (top plot). 

Errors Caused by Unknown Focal LengthErrors Caused by Unknown Focal Length

Focal length for one camera was changed from 18’’ to 40’’ withouFocal length for one camera was changed from 18’’ to 40’’ without knowing itt knowing it

 
Figure 15. “Unrecorded” change of camera’s focal length. 

The bottom plot on Fig.17 represents an attempt to 
estimate the descent rate ẑV  in this last simulation. As 
can be seen the descent rate also converged to its actual 
value pretty fast. Why do we need an estimate of the 
descent rate? Well, knowing it could significantly 
improve robustness of the PPE algorithm in the 
presence of out-of-frame and occlusions events. This is 
the issue to be addressed in future research. 
 

Simulation 1.1: Incorporating Real DataSimulation 1.1: Incorporating Real Data

 

Simulation 1.1: PPE w/ 1Simulation 1.1: PPE w/ 1ºº Angular Angular NoiseNoise

ObservationsObservations:
Algorithm works perfectly even with absolutely weird way-off initial guess

 
Figure 16. Real drop trajectory with three cameras 

emulated around the drop zone. 
Figure 17. PPE algorithm robustness with way off initial 

guesses provided. 
 

The second simulation (Sim.1.2) involved real data from two cameras. As shown on Fig.18 the video data from 
cameras 1 and 3 was provided. Unfortunately no other data on payload position was available making it impossible 
to estimate accuracy of the PPE algorithm (Fig.19). 
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This simulation included preprocessing the video data as explained in Section 1 in order to bring it down to the 
sequence of separate frames. From those the embedded azimuth-elevation data was extracted. Then it was 
augmented with the data from image processing providing frame coordinates { ( . ), ( )}i i

pl plu t v t
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Camera 1
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Simulation 1.2: Robby Drop ZoneSimulation 1.2: Robby Drop Zone

 

Simulation 1.2Simulation 1.2

Video Data 
Retrieving Algorithm

Camera 1

Camera 2

Camera 3

Generic ADS

Comparison

ObjectivesObjectives:
1. Check film/images processing algorithm;
2. Check azimuth/elevation retrieving algorithm; 
3. Tune the data retrieving algorithm;
4. Define the requirements to the video data;

PPE 
Algorithm

 
Figure 18. Real drop setup. Figure 19. Essence of Simulation 1.2. 

 
As shown in Fig.20 the Simulink model developed for the first simulation (Sim.1.1) was altered to 

accommodate real data stored in separate files rather than emulating data from three cameras. The combined video-
data-retrieving algorithm and PPE algorithm performed fairly well and produced meaningful data as shown on 
Fig.21. By meaningful we mean that at least the payload release altitude, the only available piece of data beyond the 
data from two cameras, was perfectly matched by estimates of payload’s position. Fig.21 presents azimuth-elevation 
data from two cameras (top left plots), payload’s centroid location within the image frame for these two cameras 
(top right plots), and estimates of vector ( ), ( ), ( )

T

pl pl plP x t y t z t⎡ ⎤= ⎣ ⎦
r

 components on the three bottom plots (3D 
projection, horizontal projection and time histories). 

At this point it can be stated that all components of the combined video-data-retrieving algorithm and PPE 
algorithm have been developed and thoroughly tested. The only remaining test that would be useful before 
delivering the complete algorithm to the YPG, is having both video data from two or more cameras and GPS data 
from payload itself (as shown on Fig.22) to finally tune algorithms and to address the issues of required I/O interface 
and achievable accuracy one more time. 

 
Simulation 1.2: Simulation 1.2: SimulinkSimulink ModelModel

Per Frame DataPer Frame Data

AzAz--El DataEl Data

 

Simulation 1.2: Simulation DataSimulation 1.2: Simulation Data

AzAz--El El 
DataData

PPE AlgorithmPPE Algorithm

Image Image 
Pro. Pro. 
DataData

 
Figure 20. Simulink model change. Figure 21. Complete PPE algorithm in action. 

 

IV.   Payload position and attitude estimation 
This section addresses development and testing of perspective pose estimation algorithms that estimate 

payload’s position (centroid) and orientation (three Euler angles). Solution to this problem requires data on multiple 
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known payload points (i.e. distances between points must know a priori). Since at this point no experimental data 
with several (rather than just one) clearly marked payload points is available only theoretical research and some 
simulations with emulated data were done. 

The problem formulation is stated next. Suppose projections { }( ), ( )j ju t v t onto the camera frame of several 

known payload points , j=1,…,M are given. Assume that these points can be seen by a 

single camera (lifting this assumption will be addressed later). Suppose that the LTP position  focal 
length f, azimuth 

( ) ( ), ( ), ( )
T

j j j jP t x t y t z t⎡= ⎣
r

⎤⎦

[ ], , T
c c cC x y z=

r

( )Az t , and elevation  of the camera are also available. Given this data the problem is to 
determine perspective position and orientation estimate (PPOE) of the payload. Namely, to produce estimates of the 
position of the origin of the payload’ body frame {b} with respect to the local tangent plane {u} and three Euler 
angles between these two coordinate frames (or just a rotation matrix from one coordinate frame to another, say 

( )El t

b
u R ). The experimental setup for solving this problem is shown on Fig.23. 

 
Simulation 1.3 (Future Steps)Simulation 1.3 (Future Steps)

Data Retrieving 
Algorithm

Camera 1

Camera 2

Camera 3

Generic ADS

Comparison

ObjectivesObjectives:
1. Check/tune multiple camera film/images processing algorithm;
2. Tune the data retrieving algorithm;
3. Define the requirements to the video data and the hardware to have it 
implemented at the YPG;

PPE 
Algorithm

 

Simulation 2.1 (6DoF/PPOE)Simulation 2.1 (6DoF/PPOE)

Camera 1

Pegasus Model

Comparison

ObjectivesObjectives:
1. Check/tune the trivial PPOE algorithm;
2. Evaluate accuracy versus distance;
3. Evaluate reliability of pose estimation knowing the expected dynamics;

PPOE 
Algorithm

 
Figure 22. Proposed simulation to complete position 

estimation algorithm. 
Figure 23. Experimental setup for the PPOE algorithm. 

 
We first determine necessary conditions for the existence of a solution, namely the feasibility of the problem. 

Several questions need to be answered: How can one identify more than one point on the payload? What is the 
minimum number of points needed? What are the best points to use? Are these points visible at all times by a single 
camera or by several cameras? 

Figure 24 shows samples of processed sequence of images from one of the available drops. It can be seen that 
yes, several points can indeed be distinguished. The best candidates are payload corners that should be marked. 
They are the easiest points to track by an image processing algorithm, they are characterized by the longest baseline 
which minimizes dilution of precision and they can be seen by several cameras simultaneously. The importance of 
the latter property is discussed later. Next question is which points to choose: the ones residing on one facet of 
payload (top left image on Fig.25), or on two adjacent facets (bottom left image). Or is it better to artificially 
introduce one point visible from every camera all the time (top right image)? 

When placed on one facet every point will not be observed by a single camera at all times. Since one camera 
covers almost 180º of payload’s yaw angle, having three cameras around drop zone will suffice to have every point 
on a single facet be seen by at least one of three cameras all the time. Now to provide uninterrupted data stream to 
the PPOE algorithm the data from three cameras should be blended together (that means that frame coordinates of 
all M points { (  will be available for every camera even if they are not seen physically). ), ( )}j ju t v t

The data on the points from two adjacent facets may also be used. However, in this case a single camera may 
not see all the points simultaneously (This is an important issue because each point must be uniquely identified by 
the image tracking algorithm. It might be the case that in order to restore the complete scene, all points need to be 
observed simultaneously). This decreases the “aperture” angle down to less than 90º and means that several cameras 
are needed to be used for the following data blending. Fig.26 shows a simple simulation with three points located on 
two adjacent facets of rotating payload observed by three cameras. The top left image presents a horizontal 
projection of the simulation setup with cameras’ locations and trajectories of three points of interest, bar graphs to 
the right present number of points visible by each camera. Sometimes it is all three points on both facets, sometimes 
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it is only two points on a facet or even only point on another facet. And of course for the three-camera-setup there 
are times when none of the camera sees all three points. Surprisingly even if one more camera is added to this setup, 
the problem still persists (Fig.27). 

 
Simulation 2.1: Closer Look at ImagesSimulation 2.1: Closer Look at Images

Sequence of 21 framesSequence of 21 frames

 

Simulation 2.1: Minimum Number of Points to Simulation 2.1: Minimum Number of Points to 
Track Track 

ProPro: Visibility, : Visibility, ContraContra: Short base: Short base ProPro: One point is always visible: One point is always visible

ProPro: Broader base, : Broader base, ContraContra: Visibility: Visibility

 
Figure 24. Samples of images available for PPOE proble  Figure 25. Possibl  traceable points. 

 

m
solution. 

e triplets of

Three Points Visibility: Three CamerasThree Points Visibility: Three Cameras

TwoTwo--sideside--based pointsbased points
 

Three Points Visibility: Four CamerasThree Points Visibility: Four Cameras

TwoTwo--sideside--based pointsbased points
 

Figure 26. Can three cameras see all points on two Figure 27. Does adding forth camera solve the problem

 
So far we have answered all but one question. We know that we can distinguish more than one point. Most 

like

oordinate systems ({b} and {u}) can be decomposed into rotation 
and

em, 
kno

adjacent facets simultaneously? 
? 

ly these points will be vertices of the payload container. Clearly, data from several cameras needs to be blended 
to provide smooth data stream for the PPOE algorithm. The last question: how many points are needed to reliably 
solve the PPOE problem has not been answered. 

The transformation between two Cartesian c
 translation. In stereophotogrammetry, in addition, the scale may not be known. There are obviously three 

degrees of freedom to translation. Rotation has another three (direction of the axis about which the rotation takes 
place plus the angle of rotation about this axis). Scaling adds one more degree of freedom, totaling in seven degrees 
of freedom. Two points clearly do not provide enough constraints. However, three non-collinear points known in 
both coordinate systems provide nine constraints (three coordinates each), more than enough to permit determination 
of the seven unknowns. Therefore three points constitute the minimum number of points needed to be observed. 

The PPOE problem has been addressed by the authors before (see Ref.2 and references therein). This probl
wn in the literature as the perspective 3-point pose estimation, is presented in Fig.28. The figure illustrates 

geometry of the problem and shows three biquadratic equations that must be solved. It turns out that this problem 
has been studied for 150 years (Fig.29) and so far no analytical solution has been found. In fact, even the number of 
solutions to these three equations has not been determined. Some researchers suggest that as many as 15 possible 
solutions may exist (to be obtained numerically). 
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Eventually, the “mystery” of multiple solutions was resolved a set of only two, three or four admissible 
(feasible) solutions depending on the three-point geometry was established.2 Figure 30 illustrates how the problem 
geometry impacts the number of solutions. For the case of a right tetrahedron the problem is reduced to finding 
intersections of three identical elliptical cylinders drawn around each of three axes (figure on the right). But in 
general (asymmetric) case the number of feasible solutions is two (two plots on the bottom). Figure 31 gives 
complete topography of admissible solutions. If three points (lying in the z=0 plane) are observed from the point 
belonging to a sort of inverted truncated tetrahedron referred further as an insoluble tetrahedron or IT the number of 
admissible solutions is four. Otherwise, the number of admissible solutions is two. (On the border of IT the number 
of admissible solutions is three.) 
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FinsterwalderFinsterwalder (1903) , LinnainmaaLinnainmaa, 
HanvoodHanvood, and DavisDavis (1988), GrafarendGrafarend, 
LohseLohse, and SchaffrinSchaffrin (1989), QuanQuan and 
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agree with four solutions. LohseLohse (1989) 
reports about 15 solutions.

 
Figure 28. Formulation of P3P problem. Figure 29. Historical background. 

 
P3P: The Mystery of Multiple SolutionsP3P: The Mystery of Multiple Solutions
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P3P: Analysis of Admissible SolutionsP3P: Analysis of Admissible Solutions
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Outside of the shaded region: two admissible solutionsOutside of the shaded region: two admissible solutionsOutside of the shaded region: two admissible solutions

 
Figure 30. Geometrical representation of possible 

solutions. 
Figure 31. Solutions topography. 

 
For the case of four solutions it is quite difficult to determine the correct one because they are very close to each 

other. However, in the case of two admissible solutions they can be easily distinguished from each other making it 
possible to select and track the correct one (the procedure suggested in Ref.2 suggests picking the solution with a 
correct (feasible) normal as shown on Fig.32). 

The P3P algorithm and appropriate Simulink model (Fig.33) were developed and tested. Three points on a 
single facet of payload were emulated. As expected this simulation (Sim.2.1) performed fairly well producing quite 
accurate and fast solutions while payload was sufficiently high above the camera. However as payload descended 
the camera ended up inside the IT region characterized by four admissible solutions. This ambiguity can be resolved 
by tracking four or more known points. 

In this case we can no longer expect to be able to find a transformation that maps the measured coordinates of 
points in one system exactly into the measured coordinates of these points in another. Rather, we will minimize the 
sum of squares of residual errors as was done for PPE algorithm. 
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However, for the case of four or more points finding the best set of transformation parameters is not easy. In 
practice, various empirical, graphical, and numerical procedures are used (Fig.34). These are iterative in nature. That 
is, given an approximate solution, such a method leads to a better, but still imperfect, answer. The iterative method 
is applied repeatedly until the remaining error is negligible. 
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P3P: Distinguishing Two Admissible SolutionsP3P: Distinguishing Two Admissible Solutions
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Figure 32. Distinguishing two admissible solutions. Figure 33. Pitfalls of P3P approach solution. 

 
Approaches for Perspective Approaches for Perspective nn--Point (PPoint (PnnP) Pose P) Pose 

Estimation ProblemEstimation Problem

LeastLeast--Squares SolutionSquares Solution

For these solutions to be stable For these solutions to be stable 
a large set of data points are a large set of data points are 
needed (as well as good initial needed (as well as good initial 
guess)guess)

Thomson, 1958, 1959;Thomson, 1958, 1959;
SchutSchut, 1959, 1960;, 1959, 1960;
OswalOswal & & BalasubramanianBalasubramanian, 1968, 1968
Horn, 1987, 1988Horn, 1987, 1988
Lowe, 1987;Lowe, 1987;
HaralickHaralick et al.et al., 1989, 1989

Multiple 3PPEP SolutionMultiple 3PPEP Solution

Considering subsets of three Considering subsets of three 
points and selecting a common points and selecting a common 
solutionsolution

Rives Rives et al.et al., 1981;, 1981;
FischlerFischler & & BollesBolles, 1981, 1981

Six+ points will always produce a unique solution since for deteSix+ points will always produce a unique solution since for determining 12 variables (three for the rmining 12 variables (three for the 
translation and nine for the rotation matrix) we have more than translation and nine for the rotation matrix) we have more than 12 equations:12 equations:

3 points produce 3 equations;3 points produce 3 equations;
4 points produce 6 equations;4 points produce 6 equations;
5 points produce 12 equations;5 points produce 12 equations;
6 points produce 20 equations, etc.6 points produce 20 equations, etc.

 

Some ClosedSome Closed--Form Solutions for PForm Solutions for PnnP ProblemP Problem

Approximated the perspective projection with a Approximated the perspective projection with a scaledscaled orthographicorthographic
projectionprojection to obtain a to obtain a linearlinear systemsystem, used its solution to correct , used its solution to correct 
original orthographic projection;original orthographic projection;

DeMenthonDeMenthon & Davis, 1995& Davis, 1995

Applied Applied KalmanKalman filterfilter to track a correct solution in the problem of to track a correct solution in the problem of 
retrieving retrieving motionmotion and structureand structureFaugerasFaugeras & & LustmanLustman, 1988, 1988

Replaced P4P with 3 Replaced P4P with 3 lineslines and obtained and obtained biquadraticbiquadratic polynomial polynomial 
equationequation in one unknown;in one unknown;Horaud Horaud et alet al., 1989., 1989

Applied Applied quaternionquaternion and and orthonormalorthonormal matricesmatrices for the closedfor the closed--loop loop 
leastleast--squares solution;squares solution;Horn Horn et alet al., 1987, 1988., 1987, 1988

Developed closedDeveloped closed--form solutions for coplanar and form solutions for coplanar and noncoplanarnoncoplanar P3P, P3P, 
P4P and P5P cases requiring P4P and P5P cases requiring matrixmatrix inversionsinversions and and NewtonNewton--RaphsonRaphson
iterationiteration;;

Yuan, 1989Yuan, 1989

Lowe’s algorithm was implemented in about 4,000 lines of C code,Lowe’s algorithm was implemented in about 4,000 lines of C code, whereas whereas DeMenthon’sDeMenthon’s
algorithm only requires less than 50 lines of MATLAB scriptalgorithm only requires less than 50 lines of MATLAB script

Developed P3P, P4P and P5P linear algorithms using a Developed P3P, P4P and P5P linear algorithms using a singularsingular--
valuevalue decompositiondecompositionQuanQuan & & LanLan, 1999, 1999

Applied the same (as above) Applied the same (as above) linearlinear approachapproach for P3P, P4P and P5P for P3P, P4P and P5P 
and extended it to and extended it to lineslinesAnsarAnsar & & DaniilidisDaniilidis, 2002, 2002

 
Figure 34. Approaches for PnP pose estimation. 

 
Before the introduction of a more sophisticated method employing 4+ points, a review of some of the existing 

algorithms widely used in many contexts in computer vision is given. 
The closed form solutions to the 3-point problem were discussed in several publications,3,4 which offered 

solutions with well understood multiplicities.5,6 Fischler and Bolles7 extended their solution to 4 points by taking 
subsets of three points and using consistency checks to eliminate the multiplicity for most point configurations. 
Horaud et al.8 developed a closed form solution on 4 points which avoids the reduction to a 3-point solution. These 
closed form methods can be applied to more points by taking subsets and finding common solutions to several 
polynomial systems, but the results are susceptible to noise and solutions ignore much of the redundancy in the data. 

Among so-called linear algorithms three are worth mentioning here. Quan and Lan9 derive a set of eighth 
degree polynomial constraints in even powers of the depth of each reference point by taking sets of three inherently 
quadratic constraints on three variables and eliminating two using Sylvester resultants. They apply this method to 
each point in turn. Similar algorithm suggested by Ansar and Daniilidis10 is based on depth recovery. It avoids the 
degree increase, couples all n points in a single system of equations and solves for all n simultaneously. Recently, 
Fiore11 has produced an algorithm for points which introduces two scale parameters in the world to camera 
transformation and solves for both to obtain the camera coordinates of points. Unlike Ansar and Daniilidis algorithm 
and that of Quan and Lan, Fiore’s approach requires at least 6 points unless they are coplanar. 

There also exist many iterative solutions based on minimizing the error in some nonlinear geometric constraints. 
Nonlinear optimization problems of this sort are normally solved with some variation on gradient descent or Gauss-
Newton methods. Typical of these approaches is the work of Lowe12 and of Haralick.13 There are also approaches 
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which more carefully incorporate geometry of the problem into the update step. For example, Kumar and Hanson14 
have developed an algorithm based on constraints on image lines using an update step adapted from Horn’s15 
solution of the relative orientation problem. There are several such variations using image line data. Liu et al.16 use a 
combination of line and point data. Lu, Hager and Mjolsness17 combine a constraint on the world points, effectively 
incorporating depth, with an optimal update step in the iteration. DeMenthon and Davis18 initialize their iterative 
scheme by relaxing the camera model to be scaled orthographic. 

Camera calibration is closely related to pose estimation, but is more general as the calibration simultaneously 
estimates both pose and the intrinsic parameters of the camera. Abdel-Aziz, and Karara,19 Sutherland20 and 
Ganapathy21 proposed a direct linear method DLT for solving for the 11 entries of the camera projection matrix 
from at least six corresponding points. The method is further improved by Faugeras and Toscani22 using a different 
constraint on the projection matrix. Lenz and Tsai23 proposed both linear and nonlinear calibration methods. 
Although these methods might be applied to pose determination, full calibration is a heavy over-parameterization for 
the pose problem, giving reduced stability and requiring more points. 

To conclude this review it should be noted that all iterative approaches typically exhibit slow convergence for 
poor initial guess, convergence to local minima and require a large number of points for stability. Algebraic 
approaches applied to subsets are sensitive to noise and to selecting the common root from noisy data. Therefore, the 
approach by DeMenthon and Davis18 (http://www.cfar.umd.edu/~daniel/) was chosen after careful consideration of 
several other methods. 

The method combines two algorithms.18,24,25 The first algorithm, POS (Pose from Orthography and Scaling) 
approximates the perspective projection with a scaled orthographic projection and finds the rotation matrix and the 
translation vector of the object by solving a linear system. The second algorithm, POSIT (POS with ITerations), uses 
in its iteration loop the approximate pose found by POS in order to compute better scaled orthographic projections 
of the feature points, then applies POS to these projections instead of the original image projections. POSIT 
converges to accurate pose measurements in a few iterations and can be used with many feature points at once for 
added insensitivity to measurement errors and image noise. Compared to classic approaches making use of 
Newton’s method, POSIT does not require starting from an initial guess, and computes the pose using an order of 
magnitude fewer floating point operations; it may therefore be a useful candidate for real-time operation. 

The original algorithm only computes a rotation matrix or to be more precise three vectors constituting this 
matrix, not Euler angles themselves. Because of the numerical nature of the solution this matrix is not orthonormal. 
So, necessary adjustments were made to normalize the rotation matrix to extract Euler angles from it. 

One of the method’s advantages in this application is that it easily handles any number of points (starting from 
four points). Of course these points must not reside in one plane, i.e. they should be non-coplanar points. Therefore, 
the points from two+ facets of the payload should be tracked (Fig.35). If we assume that we can detect and match in 
the image four or more non-coplanar feature points of the object (data from several cameras should be blended 
together), and that we know their relative geometry on the object, the algorithm produces the solution of the PPOE 
problem. 

Two sets of simulations using modified DeMenthon 
algorithm included: 

– Simulation 2.2: the data for four+ points was 
emulated (created artificially); and 

– Simulation 2.3: the data from the real drop (taken 
from a sequence of separate frames manually) was 
used. 

Both Matlab and Simulink models incorporating the 
developed PPOE algorithm were developed. The Simulink 
model is shown on Fig.36. Among many interactive 
features this model allows user to choose the number of 
points to track (although not all of them can be observed 
by the single camera as discussed above, the assumption is 
that the data from several cameras are combined together). 
So one can choose from four non-coplanar (on two 
adjacent facets) to eight points (in the latter case they 
represent all corners of payload parallelepiped container). Different trajectories can be considered and measurement 
noise can be added in the same manner as in the model of Section 3. 

When this algorithm is deployed at YPG it will provide a very important feature of automatic tracking of the 
payload. Knowing (predicting) its position at the very next moment allows pointing all cameras directly to it. In such 

Four+ Points to Track Four+ Points to Track 

ProPro: Visibility, : Visibility, : Coplanar geometry: Coplanar geometry : visibility: visibilityContraContra ContraContra

Blend data from cameras together and then analyze it as if been seen by a single cameraBlend data from cameras together and then analyze it as if been Blend data from cameras together and then analyze it as if been seen by a single cameraseen by a single camera

 
Figure 35. Coplanar versus non-coplanar points. 
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a case the payload will always appear almost in the center of the frame. Moreover, since all algorithms are 
interactive, having traceable points in the center of the image drastically improves the accuracy of pose estimation. 
That’s why this feedback feature has already been used in the algorithm as shown in Fig.26. 

The setup for Sim.2.2 is presented in Fig.37. Initially the virtual camera is pointed at the release point virtual 
and automatically tracks the payload while it descends. Again, the advantage of this simulation with emulated data is 
that the developed PPOE algorithm can be thoroughly tested since the real position of all points is known a priori 
and can be compared with their estimates. 

 
DeMenthon’sDeMenthon’s Algorithm for the PAlgorithm for the PnnP ProblemP Problem

 

Simulation 2.2: Emulated (4+Simulation 2.2: Emulated (4+--Point) Data from a Point) Data from a 
Single CameraSingle Camera

Camera 1Pegasus Model

Comparison

ObjectivesObjectives:
1. Check/tune PnP pose estimation algorithm;
2. Adjust a camera azimuth-elevation attitude feedback

PPOE 
Algorithm

 
Figure 36. Simulink model employing PPOE algorithm. Figure 37. Simulation 2.2 setup. 

 
The developed PPOE algorithm performed extremely well, above expectations. Results of the simulated drops 

are presented in Fig.38. The release point was at 1,500m above the camera level. Camera was about 600m away 
from the drop zone. Dimensions of the payload were chosen to be 2mx3mx2m. The payload rotated along all three 
axes with amplitude of 20º and 10º in pitch and bank, respectively. Four to eight points were used to test and tune 
the PPOE algorithm. 

 
Simulation 2.2: Simulation ResultsSimulation 2.2: Simulation Results

Position of the camera [-400;400;0]mPosition of the camera [Position of the camera [--400;400;0]400;400;0]mm

Initial payload’s position [0;0;1,500]mInitial payloadInitial payload’’s position [0;0;1,500]s position [0;0;1,500]mm Payload’s dimensions 2x3x2mPayloadPayload’’s dimensions 2x3x2s dimensions 2x3x2mm

 

Simulation 2.3: Picking Four Tracking PointsSimulation 2.3: Picking Four Tracking Points

 
Figure 38. Simulation 2.2 results. Figure 39. Digitized video sequence. 

 
The bottom left plot represents the true Euler angles versus altitude. On the right the errors of Euler angle 

estimates are shown. Surprisingly they are very small – around ±0.5º. The errors in the payload position estimate 
versus altitude are shown on the top left plot. It can be seen that while horizontal error maintain the same value of 
about ±10m the vertical error decreases from about 30m at the release point to almost 0m at the touch down point. It 
is worth emphasizing that such accurate results were obtained specifically due to feedback of payload position 
estimate. This allowed for maintaining the image of the payload (traceable points) precisely in the center of each 
frame as shown in the top right plot of Fig.38. 

From the standpoint of a number of points needed to be tracked we found that having just four non-coplanar 
points was sufficient to provide accurate estimates of translational and rotation parameters of the payload. 
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Inspired by the results of Sim.2.2 the next step incorporated real airdrop data. One of the available videos was 
digitized to produce a sequence of separate frames as shown on Fig.39. Four visible non-coplanar points residing on 
two adjacent facets were chosen. The frame coordinates of for each of these four points { ( , j=1,…,4 were 
extracted manually and stored in separate ASCII files. Azimuth-elevation data for each frame as well as camera 
location were also available. The experimental setup for this simulation (Sim.2.3) is shown on Fig.40. 

), ( )}j ju t v t
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Simulation 2.3: Results of Real Data HandlingSimulation 2.3: Results of Real Data Handling
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Figure 40. Simulation 2.2 setup. Figure 41. Results of Simulation 2.3. 

 
The results of simulation are shown in Fig.41 All the data points used are presented in top left plot. Clearly, 

automatic tracking of the payload (Fig.38) outperforms the manual tracking. The payload for the real drop video 
data is not always in the center of the image. The restored 3D trajectory and coordinate time-histories of the payload 
are shown on two plots at the bottom of Fig.41. In the absence of any GPS/IMU data they cannot be validated but at 
least the simulation results match the release altitude that is known. As for the Euler angles, their time-histories are 
shown on top right plot. At least visually they match the data from the images fairly well. 

Not much can be done at this point in the absence of experimental data. However, to complete this study two 
more should be developed. First, the blending algorithm that combines the data from several cameras has to be 
developed as shown in Fig.42. Then multi-point image processing algorithm should be developed. This will require 
distinct markings on the payload. Complete setup for the proposed final simulation is shown on Fig.43. 
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Figure 42. Accommodating data from several cameras. Figure 43. Complete setup for the autonomous PPOE 

simulation. 
 

V.   Conclusion 
In the course of this study several Matlab/Simulink compatible tools were developed. They include software for 
video data processing, perspective position estimation and perspective position plus orientation estimation. These 
algorithms proved their accuracy and robustness in several numerical simulations based on (incomplete) sets of 

16 
American Institute of Aeronautics and Astronautics 



experimental data. To proceed with the development of the complete self-contained system more experiments are 
needed to be carried out. The complete sets of experimental data including that of tracking of several properly 
marked points by multiple cameras should be incorporated into analysis. The problem of maintaining sufficient data 
about multiple predefined tracking points from all available cameras all the time with the goal of uninterrupted pose 
estimation also needs to be addressed. Finally, the IMU/GPS data for the payload is also needed to compare the 
results of estimation with the true data. 
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